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This paper provides free vibration data for cylindrical elastic solids, specifically thick

circular plates and cylinders with V-notches and sharp radial cracks, for which no

extensive previously published database is known to exist. Bending moment and shear

force singularities are known to exist at the sharp reentrant corner of a thick V-notched

transverse shear stresses are known to exist at the sharp reentrant terminus edge of a

V-notched cylindrical elastic solid under 3-D free vibration. A theoretical analysis is done

in this work utilizing a variational Ritz procedure including these essential singularity

effects. The procedure incorporates a complete set of admissible algebraic–trigonometric

polynomials in conjunction with an admissible set of ‘‘edge functions’’ that explicitly

model the 3-D stress singularities which exist along a reentrant terminus edge (i.e.,
a41801) of the V-notch. The first set of polynomials guarantees convergence to exact

frequencies, as sufficient terms are retained. The second set of edge functions—in

addition to representing the corner stress singularities—substantially accelerates the

convergence of frequency solutions. This is demonstrated through extensive convergence

studies that have been carried out by the investigators. Numerical analysis has been

carried out and the results have been given for cylindrical elastic solids with various

V-notch angles and depths. The relative depth of the V-notch is defined as (1�c/a), and

the notch angle is defined as (3601�a). For a very small notch angle (11 or less), the notch

may be regarded as a ‘‘sharp radial crack.’’ Accurate (four significant figure) frequencies

are presented for a wide spectrum of notch angles (3601�a), depths (1�c/a), and

thickness ratios (a/h for plates and h/a for cylinders). An extended database of

frequencies for completely free thick sectorial, semi-circular, and segmented plates

and cylinders are also reported herein as interesting special cases. A generalization of the

elasticity-based Ritz analysis and findings applicable here is an arbitrarily shaped

V-notched cylindrical solid, being a surface traced out by a family of generatrix, which

pass through the circumference of an arbitrarily shaped V-notched directrix curve, r(y),

several of which are described for future investigations and close extensions of this work.
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1. Introduction

In the literature, one can find on the order of 1000 published references on vibrations of circular cylindrical shells, based
upon 2-D shell theory [1]. However, relatively speaking, very little has been done in the associated literature of three-
dimensional (3-D) vibrations characteristics of thick circular cylindrical bodies. Understanding such vibration
characteristics require a 3-D prediction procedure, which is based upon 3-D theory of elasticity. A 3-D analysis places
none of the kinematic constraints of the 2-D theories. Effective solutions to the 3-D dynamic problems of elastic bodies are
very difficult to obtain and, as a result, only a limited number of papers dealing with the free vibrations of thick cylindrical
elastic bodies have appeared.

Pochhamer [2] and Chree [3] offered the earliest known studies of the vibration of infinitely long cylindrical solids.
Greenspon [4], Gazis [5] and Armenakas [6] extended the early Pochhamer–Chree fundamental work in examining the
vibration of infinitely long traction-free hollow cylindrical bodies using 3-D theory of elasticity. Pickett [7] provided some
early free vibration solutions for solid cylindrical bodies modeled as circular disks. McNiven and Perry [8] and McNevin
et al. [9] developed a three-mode theory for axisymmetric vibrations of elastic bodies modeled as rods and hollow
cylinders. Various approximate numerical procedures including finite differences, as well as experimental tests have been
employed in examining cylindrical solids idealized as rods and beams [10–16]. Using finite element techniques, the
axisymmetric vibrations of cylindrical solids was analyzed by Gladwell and Tahbildar [17], as well as, the vibration of free
finite length circular cylindrical solids was predicted by Gladwell and Vijay [18]. Hutchinson [19,20] developed a semi-
analytical highly accurate 3-D theory of elasticity solution of the vibrations of finite length elastic solids characteristic of
rods and solid cylinders, and Hutchinson and El-Azhari [21] extended the Hutchinson semi-analytical solution to the
vibrations of free hollow finite length circular cylindrical bodies. A number of researchers [22–25] have studied the free
vibrations of completely free cylindrical bodies, both solid and hollow, by means of either approximate theoretical methods
or experimental measurements. Singal and Williams [22] investigated the vibrations of thick hollow cylindrical bodies
using an energy method based on the 3-D theory of elasticity. Leissa and So [23,24] and So and Leissa [25] studied the
vibrations of free and cantilevered cylindrical solids using simple algebraic polynomial displacement fields in a 3-D
elasticity-based Ritz procedure. Liew and Hung [26], Liew et al. [27], and Hung et al. [28] studied the free vibrations of solid
and hollow cylindrical bodies having various end conditions using combined orthogonal polynomial-boundary function
displacement fields in a similar 3-D elasticity-based Ritz procedure. Convergence of the procedure and parametric
investigations were performed for numerous end conditions and cross-sections of hollow cylindrical bodies. Some studies
have also been performed on the vibrations of cylindrical bodies that include the classification of natural frequencies or
mode shapes, such as the study presented by Wang and Williams [29] using the finite element method. Modified versions
of 3-D elasticity-based Ritz approaches using Chebyshev-based admissible displacement fields have been proposed to
obtain more accurate and quicker convergence of solutions. For example, Zhou et al. [30] studied 3-D vibrations of solid and
hollow cylindrical bodies using such elasticity-based Ritz techniques, adopting a triplicate Chebyshev polynomial series as
assumed displacement fields adjusted with admissible boundary functions, and Lee et al. [31] and Ebenezer et al. [32]
similarly addressed elasticity-based free and forced vibration solutions of hollow cylindrical bodies.

Furthermore, the scope of previous work done for vibrations of completely free cylindrical elastic solids having
V-notches or cracks is very scarce. The V-notches may be generated by various types of machine tools (e.g., milling,
grinding and shaping machines), or even by sawing. Cracks are usually created in machine components and civil and
aerospace engineering structures and components subjected to cyclic dynamic loading inducing stress fatigue even
cracks. The V-notches or cracks not only degrade the structural dynamic performance of civil, aerospace and
mechanical components, but also fundamentally cause changes in the natural frequencies and mode shapes of such
components.

An eigenfunction expansion technique has been used to analyze the vibrations of classical thin plates with re-entrant
corner (boundary-type) singularities (see [33]). In Leissa et al. [33], accurate frequencies and mode shapes were presented
for completely free classically thin circular plates with V-notches and sharp radial cracks. The concurrent work of the
authors has extended the use of eigenfunction expansion to the vibration of completely free Mindlin sectorial plates.
Specifically, the 2-D comparison functions (i.e., Mindlin corner functions), which account for the bending moment and
transverse shear force singularities at the vertex of the Mindlin sectorial plates, have been developed using modified
Mindlin differential equilibrium equations. The present work extends Leissa et al. [33], McGee and Kim [34], Mindlin [35],
and McGee et al. [36] to elastic cylindrical bodies classified as thick circular plates and cylinders having V-notches and
sharp radial cracks, for which no previously published vibration characteristics are known to exist. Sih [37], Hartranft and
Sih [38], Folias [39], Shaofu et al. [40], Shen [41] and Tandon [42] developed eigenfunctions, which satisfy the 3-D
equilibrium equations and stresses for an infinite solid with a crack. In McGee and Kim [34], Sih [37] and Hartranft and Sih
[38] procedures have been extended for computational employment in the 3-D vibration analysis of reentrant V-notched
cylindrical elastic solids with a finite thickness. A truncated procedure of solving the 3-D equilibrium equations has been
used to derive the comparison functions (i.e., 3-D edge functions), which account for tri-axial stress singularities along the
terminus reentrant edge of notched elastic solids. In the present analysis, the 3-D dynamical energies of arbitrarily shaped,
notched or cracked elastic solids have been maximized using a Ritz procedure with the displacement field approximated by
a hybrid trial function of admissible and mathematically complete algebraic–trigonometric polynomials and admissible
edge functions that account for the unbounded stresses at the sharp corner/edge of the V-notch.
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Fig. 1. The 3-D cylindrical solid with a V-notch.
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The relative depth of the V-notch of the cylindrical elastic bodies is defined as (1�c/a), and the notch angle is defined as
(3601�a) (Fig. 1). For a very small notch angle (11 or less), the notch may be regarded as a radial crack. For c/a=0, the special
cases of a completely free, sectorial, thick plate and cylinder are formed. The 3-D vibrations of V-notched cylindrical elastic
solids are classified into two groups, namely, on the one hand, V-notched plates having a/h=20 (thin) [34], a/h=10
(moderately thick) [36], and a/h=5 (thick), and on the other hand, V-notched cylinders with h/a=2, 4, 6, and 10. Here, the
cylinders of h/a=6 and 10 may be considered as V-notched and cracked slender rods—for which newly published 3-D
vibration solutions are presented herein extending the work of Leissa and So [23,24], So and Leissa [25], and other recent
investigations [30,49] discussed herein—and for which a wider range of newly published results by the present writers are
to appear.

It is important to determine whether stress singularities along the reentrant terminus edge of a V-notch must be
explicitly taken into consideration to obtain accurate vibration solutions. To clearly understand the phenomenology and
nature of the 3-D normal and transverse shear stress singularities existing along the V-notch terminus edge, normalized
contour plots of vibratory in-plane and transverse displacements are presented for a thick circular plate with a sharp notch
(i.e., 51 notch angle), and for a cylinder with a sharp radial crack notch (i.e., 11 notch angle). Comparisons of free vibration
characteristics are presented in this study between the results obtained by the methodology employed by the authors and
previously published results obtained by alternative approaches to the solutions.
2. Method of analysis

As a classic problem of solid mechanics, the mensuration of an arbitrarily shaped cylindrical body was defined by
Archimedes, who first put in plain words that the volume of any cylindrical solid was equal to the product of the area of its
base into the height, h, of the solid, and that the area of the curved surface was equal to that of an arbitrarily shaped panel
(e.g., a rectangular panel in the special case of a circular cylindrical solid) having two of its sides equal to the circumference
of the arbitrarily shaped base and the other two sides equal to the height of the solid. The V-notched cylindrical solid
shown in Fig. 1 is a surface traced out by a line, called a generatrix, that moves parallel to itself and passes through the
circumference of a V-notched circular curve, r(y), called a directrix. A generalization of this structural configuration further
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proposed here is an arbitrarily shaped V-notched cylindrical solid, being a surface traced out by a family of generatrix,
which pass through the circumference of an arbitrarily shaped V-notched directrix curve, r(y), several of which are
described in Appendix A (see Fig. A1). The axis of an arbitrarily shaped V-notched cylindrical solid is the line joining
the centers of two V-notched arbitrarily shaped sections; it is the line through the center of the directrix, r(y), parallel to the
generators.

A continuum-based 3-D variational Ritz formulation for completely free cylindrical elastic solids having a V-notch
(Fig. 1) is derived in cylindrical coordinates. No simplifying kinematic assumption are made on the strain distribution
through the thickness of the elastic bodies, as typically used in rod, beam, plate and shell theories. The Ritz procedure is
employed with two sets of admissible functions assumed for the in-plane u and v, and transverse w, vibratory
displacements. The first set comprises mathematically complete algebraic–trigonometric polynomials, which guarantee
convergence to exact frequency solutions, as sufficient solution sizes are retained. However, when a large size of
polynomials is utilized, numerical ill-conditioning becomes an obstacle and prohibits one from achieving accurate
solutions. Thus, a second set of edge functions [34] is employed, which account for tri-axial stress singularities along the
terminus edge of a reentrant V-notch or sharp radial crack of an elastic solid.

Strain energy of the 3-D V-notched cylindrical elastic solid (Fig. 1) is given by the volume integral,

V ¼
1

2

Z Z Z
½Lðer þ ey þ ezÞ

2
þ 2Gðe2

r þ e
2
y þ e

2
z Þ þ Gðg2

ry þ g
2
rz þ g

2
yzÞ�rðyÞdr dydz; (1)

where we have incorporated in the above and hereafter, an assumed arbitrary radial coordinate variable function, r=r(y),
and where L and G are Lam�e constants

L ¼
nE

ð1þ nÞð1� 2nÞ
;G ¼

E

2ð1þ nÞ
: (2)

E is Young’s modulus, and n is Poisson’s ratio.
In terms of 3-D elastic solid displacement components ður ;vy;wzÞ, the strain–displacement equations are defined as

er ¼
qur

qr
; ery ¼

1

2

1

rðyÞ
qur

qy
�

vy

rðyÞ
þ
qvy

qr

� �
;

ey ¼
1

rðyÞ
qvy

qy
þ
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rðyÞ
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1

2
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þ
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� �
;
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qwz

qz
; eyz ¼

1

2
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qz
þ

1

rðyÞ
qwz

qy

� �
; (3)

where ur and vy are in-plane displacements along the radial and circumferential directions, respectively, and wz is the
transverse displacement. During vibration the kinetic energy of the 3-D V-notched cylindrical elastic solid (Fig. 1) is given
by the volume integral

T ¼
r
2

Z Z Z
ð _u2

r þ _v2
y þ _w2

z ÞrðyÞdr dydz; (4)

where r is the mass per unit volume and the dots represent time derivatives.
Assuming simple harmonic motions in time t, as follows:

urðr; y; zÞ ¼ Urðr; y; zÞeiot ;

vyðr; y; zÞ ¼ Vyðr; y; zÞeiot ;

wzðr; y; zÞ ¼Wzðr; y; zÞeiot : (5)

In Eq. (5) only i ¼
ffiffiffiffiffiffiffi
�1
p

and the vector set ðUr ;Vy;WzÞ are 3-D displacement amplitude functions corresponding to the
vibratory circular frequency (o) (in rad/s) of a cylindrical solid having a V-notch.

Assuming maximum displacements in a vibratory cycle and introducing under this condition Eqs. (5) into Eqs. (1)–(4),
the maximum strain and kinetic energies, Vmax and Tmax, respectively, during a vibratory cycle are, as follows:

Vmax ¼
1

2

Z Z Z
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qUr
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)

rðyÞdr dydz; (6a)

Tmax ¼
ro2

2

Z Z Z
ðU2

r þ V2
y þW2

z ÞrðyÞdr dydz: (6b)
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The total energy functional required by the variational Ritz method and established upon substitution of Eqs. (6a and b) is

P ¼ Vmax � Tmax: (7)

In Eqs. (6) and (7), the combined 3-D symmetric and anti-symmetric spatial trial functions for the in-plane
displacements (Ur, Vy) and transverse displacement (Wz) are

Urðr; y; zÞ ¼
XL

i¼1

aixiðr; y; zÞ ¼ Us
r þ Ua

r ¼ Us
rp
þ Us

re
þ Ua

rp
þ Ua

re
;

Vyðr; y; zÞ ¼
XM
i¼1

biziðr; y; zÞ ¼ Vs
y þ Va

y ¼ Vs
yp
þ Vs

ye
þ Va

yp
þ Va

ye
;

Wzðr; y; zÞ ¼
XM
i¼1

cijiðr; y; zÞ ¼Ws
z þWa

z ¼Ws
zp
þWs

ze
þWa

zp
þWa

ze
; (8)

where in the above, ai, bi, and ci represent collectively adjustable coefficients associated with xi; zi; and ji, which are hybrid
series of admissible approximate displacement fields, comprised of mathematically complete algebraic–trigonometric
polynomials (indicated by the subscripted (p)) and edge functions (indicated by the subscripted (e)), described later and
particularly suitable through inherent symmetries (indicated by the superscripted symmetric (s) and anti-symmetric (a)
notations) for the 3-D vibratory displacements of thick circular plates and cylinders having a V-notch or sharp radial crack.
Minimizing the total energy functional (Eq. (7)) with respect to the generalized coefficients of Eqs. (8) leads to the following
matrix set of linear homogeneous algebraic equations, recast as a standard eigenvalue problem for the jth characteristic
circular frequency, oj, corresponding to the jth characteristic vector of generalized coefficients, [{ai}

T,{bi}
T,{ci}

T]j
T:

qðVmax � TmaxÞ

qai
¼ 0;

qðVmax � TmaxÞ

qbi
¼ 0;
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qci
¼ 0;

½Kaa
ij � ½K
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ij �
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ij �
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ij �

2
664

3
775�o2

j
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ij � ½0� ½0�
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ij �

2
664

3
775

0
BB@

1
CCA
faig

fbig

fcig

8><
>:

9>=
>;

j

¼

f0g

f0g

f0g

8><
>:

9>=
>;; (9)

in which the coefficients for the elastic stiffness [Kij] are defined as follows:

Kaa
ij ¼

Z Z Z
ðLþ 2GÞ rðyÞ
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qr
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þ
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� �
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� �
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� �� �
dr dydz; (10)

and the coefficients for the inertial mass [Mij] are defined as

Maa
ij ¼ r

Z Z Z
rðyÞxixj dr dydz;

Mbb
ij ¼ r

Z Z Z
rðyÞzizj dr dydz;

Mcc
ij ¼ r

Z Z Z
rðyÞjijj dr dydz: (11)
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The vanishing determinant of the algebraic equations (9) yields a set of eigenvalues (natural frequencies), which are
subsequently expressed in terms of the non-dimensional frequency parameter oa2

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
, commonly used in the

plate vibration literature (Note: oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
is employed for the sake of uniformity and comparison of results across

the wide range of idealizations of V-notched cylindrical bodies, including thin and thick V-notched plates (a/h=5–20),
albeit for the wide range of cylinders (h/a=2–10) examined herein, variations in oa2

ffiffiffiffiffiffiffiffiffi
r=E

p
could also be a more useful

parameter to observe, or even still, variations in oa
ffiffiffiffiffiffiffiffiffi
r=G

p
employed by others [49]. Eigenvectors involving the generalized

coefficients {ai}, {bi}, and {ci} may be determined in the usual manner by substituting the eigenvalues back into the
homogeneous equations (9). These resulting eigenvectors of generalized coefficients are then substituted back into Eqs. (8)
to calculate normalized in-plane and transverse displacement modal contours of V-notched cylindrical elastic bodies. In
this work, these modal contours are normalized at the middle surface of the V-notched plates with respect to the
maximum in-plane and transverse displacement components (i.e., �1rUr=Urmaxr1, �1rVy=Vymax

r1, and �1rWz=

Wzmaxr1, whereas for visualizing and comparing the V-notched cylinder mode shapes, the modal contours are normalized
at the top surface of the cracked cylinder with respect to the maximum in-plane and transverse displacement components.

For a cylindrical elastic solid having a V-notch or sharp radial crack, values of r(y) in Eqs. (9)–(11), defining the stress-
free circumferential face (as shown by the variable location of the assumed cylindrical coordinates in Fig. 1), is explicitly
y-dependent and thus, a new generalized numerical volume integration procedure was developed in the present work to
perform the complicated volume integrals in Eqs. (9)–(11). For completeness and generality of the present formulation to
arbitrarily shaped cylindrical elastic solids with V-notches and sharp radial cracks, the volume integrals in Eqs. (9)–(11)
have been generalized and accurately carried out for six representative domains using the values of r(y) given in
Eqs. (A.1)–(A.6c) in Appendix A. Classical Chaldni-type laboratory observations and findings [1] reveal vibration
characteristics of circular and arbitrarily shaped elastic solids modeled as plates yield largely similar nodal patterns, albeit
the non-dimensional frequencies may differ depending on the elastic solid shape. Such Chaldni-type nodal pattern
observations do not generalize as similar relationships between V-notched circular cylindrical elastic solids and V-notched
arbitrarily shaped cylindrical elastic solids. Moreover, the additional formulations of r=r(y) in Appendix A generalize
Eqs. (9)–(11) of the present analysis for future follow-on extensions used by other investigators to examine 3-D vibrations
of arbitrarily shaped V-notched thick plates and generally shaped V-notched elastic bodies.

The 3-D displacement amplitude functions for the vibrations of a completely free cylindrical elastic solid having a
V-notch or sharp radial crack are assumed as the sum of two finite series: (i) admissible, mathematically complete,
algebraic–trigonometric polynomials and (ii) admissible edge functions.

For the symmetric 3-D vibration modes, displacement trial functions are assumed as

Us
r ¼ Us

rp
þ Us

re
;

Vs
y ¼ Vs

yp
þ Vs

ye
;

Ws
z ¼Ws

zp
þWs

ze
; (12)

where Us
rp

, Vs
yp

, Ws
zp

are the admissible and mathematically complete set of symmetric algebraic–trigonometric polynomials
and Us

re
, Vs

ye
, Ws

ze
are admissible symmetric edge functions, which account for singular stress behavior along the re-entrant

terminus edge of the V-notch (Fig. 1). In Eqs. (12), the symmetric algebraic–trigonometric polynomial functions are
written as

Us
rp
ðr; y; zÞ ¼

XI1

i¼2;4

Xi

j¼0;2;4

XK1

k¼0

As
ijkri�1 cosðjyÞzk þ

XI2

i¼1;3;5

Xi

j¼1;3;5

XK2

k¼0

As
ijkri�1 cosðjyÞzk;

Vs
yp
ðr;y; zÞ ¼

XI3

i¼2;4

Xi

j¼2;4

XK3

k¼0

Bs
ijkri�1 sinðjyÞzk þ

XI4

i¼1;3;5

Xi

j¼1;3;5

XK4

k¼0

Bs
ijkri�1 sinðjyÞzk;

Ws
zp
ðr; y; zÞ ¼

XI5

i¼2;4

Xi

j¼0;2;4

XK5

k¼0

Cs
ijkri cosðjyÞzk þ

XI6

i¼1;3;5

Xi

j¼1;3;5

XK6

k¼0

Cs
ijkri�1 cosðjyÞzk; (13)

in which As
ijk;B

s
ijk; and Cs

ijk are undetermined coefficients in ai, bi, and ci (Eqs. (8)), and the values of i, j, and k are specially
chosen to avoid unacceptable stress singularities at r=0, and yet preserve the mathematical completeness of the resulting
series. Thus, convergence to the exact frequencies is guaranteed, when this series is employed in the present Ritz procedure.

The displacement polynomials in Eqs. (13) should theoretically yield accurate frequencies even for a completely free
cylindrical elastic solid having a V-notch or sharp radial crack, where stress singularities exists at the terminus reentrant
edge. However, the number of terms required may be computationally prohibitive. This problem is alleviated by
augmentation of the displacement algebraic–trigonometric polynomial trial set for the symmetric 3-D modes with
admissible symmetric edge functions [34], which introduce the proper 3-D singular vibratory stresses along the terminus
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edge formed by the free radial faces. The set of symmetric edge functions is taken as

Us
re
ðr; y; zÞ ¼

XM1

m¼1

XK1

k¼0

ðRe½Us
rmk
ðr; y; zÞ� þ Im½Us

rmk
ðr;y; zÞ�Þ;

Vs
ye
ðr;y; zÞ ¼

XM2

m¼1

XK2

k¼0

ðRe½Vs
ymk
ðr; y; zÞ� þ Im½Vs

ymk
ðr; y; zÞ�Þ;

Ws
ze
ðr; y; zÞ ¼

XM3

m¼1

XK3

k¼0

WK3
zmk
ðr; y; zÞ; (14)

where Us
rmk

, Vs
ymk

, Ws
zmk

are the symmetric edge function series, which have been derived by McGee et al. [34].
Essentially therein, the characteristic equations and the corresponding edge functions are derived for a 3-D elastic

sectorial solid having both radial faces completely free, satisfying the stress free radial face conditions. Advantage of the
inherent symmetry is taken by choosing y such that the boundaries are at y ¼7a=2. Then, the solution of the eigensystem
may be divided into its symmetric and anti-symmetric parts, which is adopted in the present work, and yielding the edge
functions employed herein. As a result, the characteristic equations for free-free radial face conditions are [34]

sinlma ¼8lm sina; (15a)

sinðlmÞ
a
2
¼ 0; ðsym:Þ;

cosðlmÞ
a
2
¼ 0; ðantisym:Þ: (15b)

For the characteristic values, lm, obtained by solving the characteristic Eqs. (15) (the minus sign (�) in Eq (15a)
corresponding to the symmetric modes), the symmetric in-plane displacements, Us

rmk
, Vs

ymk
, is

For symmetric modes

Us
rmk
ðr; y; zÞ ¼

X1
m¼1

X1
k¼0

rlm Cmk �

B2m cosðlm � 1Þ
a
2

cosðlm þ 1Þ
a
2

cosðlm þ 1Þyþ cosðlm � 1Þy

8><
>:

9>=
>;zk; (16a)

Vs
ymk
ðr; y; zÞ ¼

X1
m¼1

X1
k¼0

rlm Cmk

B2m cosðlm � 1Þ
a
2

cosðlm � 1Þ
a
2

sinðlm þ 1Þy� bm sinðlm � 1Þy

8><
>:

9>=
>;zk; (16b)

where given n is Poisson’s ratio, then

B2m ¼
lm þ 1

lm � 3þ 4n ;bm ¼
lm þ 3� 4n
lm � 3þ 4n ; (16c)

and for the characteristic values lm (Eq. (15b)), the transverse displacement, Ws
zmk

, is

Ws
zmk
ðr; y; zÞ ¼

X1
m¼1

X1
k¼0

rlm GmkðcoslmyÞzk: (16d)

and Cmk and Gmk are arbitrary generalized coefficients in ai, bi, and ci (Eqs. (8)). Similarly, for the 3-D anti-symmetric
vibration modes, the trial displacement functions are

Ua
r ¼ Ua

rp
þ Ua

re
;

Va
y ¼ Va

yp
þ Va

ye
;

Wa
z ¼Wa

zp
þWa

ze
; (17)

where the anti-symmetric algebraic–trigonometric polynomial functions are

Ua
rp
ðr; y; zÞ ¼

XI1

i¼2;4

Xi

j¼2;4

XK1

k¼0

Aa
ijkri�1 sinðjyÞzk þ

XI2

i¼1;3;5

Xi

j¼1;3;5

XK2

k¼0

Aa
ijkri�1 sinðjyÞzk;

Va
yp
ðr; y; zÞ ¼

XI3

i¼2;4

Xi

j¼0;2;4

XK3

k¼0

Ba
ijkri�1 cosðjyÞzk þ

XI4

i¼1;3;5

Xi

j¼1;3;5

XK4

k¼0

Ba
ijkri�1 cosðjyÞzk;

Wa
zp
ðr; y; zÞ ¼

XI5

i¼2;4

Xi

j¼2;4

XK5

k¼0

Ca
ijkri sinðjyÞzk þ

XI6

i¼1;3;5

Xi

j¼1;3;5

XK6

k¼0

Ca
ijkri sinðjyÞzk; (18)
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in which Aa
ijk;B

a
ijk and Ca

ijk are undetermined coefficients in ai, bi, and ci (Eqs. (8)), Similarly, as in Eqs. (13), the values of i, j,
and k are specially chosen to avoid unacceptable stress singularities at r=0, and yet preserve the mathematical
completeness of the resulting series. The corresponding anti-symmetric edge functions are

Ua
re
ðr; y; zÞ ¼

XM1

m¼1

XK1

k¼0

ðRe½Ua
rmk
ðr; y; zÞ� þ Im½Ua

rmk
ðr; y; zÞ�Þ;

Va
ye
ðr; y; zÞ ¼

XM2

m¼1

XK2

k¼0

ðRe½Va
ymk
ðr; y; zÞ� þ Im½Va

ymk
ðr;y; zÞ�Þ;

Wa
ze
ðr;y; zÞ ¼

XM3

m¼1

XK3

k¼0

Wa
zmn
ðr; y; zÞ; (19)

where Ua
rmk

, Va
ymk

, Wa
zmk

have been developed elsewhere [34], resulting in
For anti-symmetric modes

Ua
rmk
ðr; y; zÞ ¼

X1
m¼1

X1
k¼0

rlm Dmk �

B2m sinðlm � 1Þ
a
2

sinðlm þ 1Þ
a
2

sinðlm þ 1Þyþ sinðlm � 1Þy

8><
>:

9>=
>;zk; (20a)

Va
ymk
ðr; y; zÞ ¼

X1
m¼1

X1
k¼0

rlm Dmk

B2m sinðlm � 1Þ
a
2

sinðlm þ 1Þ
a
2

cosðlm þ 1Þyþ bm cosðlm � 1Þy

8><
>:

9>=
>;zk; (20b)

Wa
zmk
ðr; y; zÞ ¼

X1
m¼1

X1
k¼0

rlm GmkðsinlmyÞzk: (20c)

and Dmk and Gmk are arbitrary generalized coefficients in ai, bi, and ci (Eqs. (8)). The characteristic values lm of the above
anti-symmetric in-plane displacements, Us

rmk
, Vs

ymk
, are obtained by solving the characteristic Eqs. (15) (the minus sign (+) in

Eq. (15a) corresponding to the anti-symmetric modes).
Each of the symmetric functions (Eqs. (16a)–(16c)) and anti-symmetric functions (Eqs. (20a)–(20c)) serve as

assumed edge functions corresponding to the 3-D intersection of two free radial faces. Analogous to classically thin
plates [33,44–46] and Mindlin plates [47,36,43], 3-D edge functions characterize the local stress distribution,
which can be singular along a terminus edge formed at the reentrant corner formed by the two intersecting radial
faces [34].

Edge functions are grouped in order of increasing magnitude of the corresponding lm and lm. For a complex l the real
and imaginary parts of the corresponding complex edge functions are used as independent functions (i.e., Eqs. (14), (16a,b),
(19) and (20a,b)). The transverse edge functions (i.e., Eqs. (16c) and (20c)) are ordered by real l only. The solutions of lm in
Eqs. (15a) may be complex numbers, and to find the required numbers of lm in sequence based on the magnitude of lm, the
subroutine ZANLY in IMSL is used. However, the characteristic equations for lm in Eqs. (15b) have exact solutions which are
for the symmetric modes,

lm ¼
2mp
a ðm ¼ 1;2;3; . . .Þ for all a; (21a)

and for the anti-symmetric modes,

lm ¼
2 m� 1

2

� �
p

a ðm ¼ 1;2;3; . . .Þ for all a: (21b)

From Eqs. (21), one can see that the transverse shear stresses (trz and tyz) along the terminus of a V-notch having free radial
faces vary as rp/a for all a as shown in Ref. [34].

The 3-D stresses along the V-notch terminus edge (r=0) become infinite (i.e., singular) for 0olmo1 and 0olmo1. For
lm41, no normal (sr, sy, and sz) and in-plane shear (try) stress singularities exist along the V-notch terminus edge. For
lm41, the singular transverse shear stresses (trz and tyz) are not present along the terminus edge. The chart summarizes
the smallest characteristic values of lm and lm used in the 3-D edge functions given in Eqs. (15) and (21) for various
terminus angles (a). Here, use of the edge functions in conjunction with the algebraic–trigonometric polynomials
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allows proper representation of the terminus edge stress singularities for the free vibration of the completely free notched
elastic solids.
O

c/a = 0.75

0.75

1α
0.5

1α

c/a = 0.5

Fig. 2. V-notche
1

α

c/a = 0

s with various depths.
0.5

1

c/a = -0.5
a (deg)
 lm
 lm
S*
 A**
 S*
 A**
270
 0.544
 0.909
 1.333
 0.667
300
 0.512
 0.731
 1.200
 0.600
330
 0.501
 0.598
 1.091
 0.545
350
 0.500
 0.529
 1.029
 0.514
355
 0.500
 0.514
 1.014
 0.507
359
 0.500
 0.503
 1.003
 0.501
*Symmetric mode in y.

**Anti-symmetric mode in y.

It should be noticed that for symmetric modes (in the chart, the smallest lm41), the edge functions do not account for the
singular transverse shear stresses (trz and tyz) along the terminus edge of the V-notch [38].
3. Convergence studies

The 3-D Ritz formulation, as discussed, is employed to obtain reasonably convergent frequency solutions, as sufficient
numbers of algebraic–trigonometric polynomials and 3-D edge functions are utilized. Substituting Eqs. (12)–(20) into
Eqs. (9)–(11), a set of eigenvalue equations is established for symmetric mode and anti-symmetric mode in y, respectively.
The associated eigenvalue equations are particularly suitable for completely free circular plates and cylinders having a
V-notch (Fig. 1).

Convergence studies are presented for completely free, thick circular plates (a/h=5) and cylinders (h/a=2) having
V-notches with a 51 notch angle (3601�a, where a=3551) and having c/a of 0.75 and 0. Depicted in Fig. 2 are four
representative configurations, which are examined in this work. These configurations are delineated by notch depths
ranging from a shallow notch (c/a=0.75) to a very deep notch (c/a=�0.5). In all calculations, Poisson’s ratio n has been set to
0.3. All of the frequency calculations in this work were performed on an IBM/RS-6000 970 power-server with an IBM 340
workstation cluster using extended precision (28 significant figure) arithmetic.

Table 1 presents the convergence studies on the first six non-dimensional frequency parameters oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for a

completely free thick (a/h=5) circular plate having a shallow notch (c/a=0.75) with a 51 notch angle (a=3551). Frequency
results are obtained as 13�3, 14�3, 15�3, 16�3, and 17�3 polynomial solutions are used in conjunction with 0, 1�3,
5�3, 10�3, 15�3, and 17�3 3-D edge function solutions for each symmetry class in y. The polynomial solution sizes
describe the number of upper indices Iq and Kq, where q=1,2,y,6, in Eqs. (13) or (18). For each of the in-plane and transverse
displacement functions, equal numbers for Iq (i.e., I1=I2=?=I6) and Kq (i.e., K1=K2=?=K6) were employed in all of the 3-D
Ritz calculations. For example, a 13�3 solution size is defined by the upper indices Iq=13 and Kq=3 in Eqs. (13) or (18). Here,
Kq=3 means that a four-term polynomial series is used in the thickness direction (z-direction). Equal sizes of edge functions
(i.e., M1=M2=M3 and K1=K2=K3 in Eqs. (14) and (16) or (19)–(20)) were also used for the in-plane and transverse
displacement fields. Note that a reasonably sufficient cubic (i.e., K1=K2=K3=3, or four-term polynomial series)
approximation in the z-direction was employed for the edge function trial sets as well as the polynomial trial sets to
properly represent thick plate transverse shear behaviors and to ensure accurate solutions. It should be also noted that the
first six modes are rigid body modes in the 3-D vibration of the completely free circular plates having V-notches. These
rigid body frequencies, which are zero, are not shown in the tables.
α
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Fig. 3. Convergence of fundamental frequency parameters for a completely free thick circular plate having a V-notch (a=3551, c/a=0.75, a/h=5).

Table 1

Convergence of frequency parameters oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for a completely free thick circular plate having a V-notch (a=3551, c/a=0.75, a/h=5).

Mode no. (symmetry classa) Size of edge functions Solution size of polynomials

13�3 14�3 15�3 16�3 17�3

1 0 5.118 5.118 5.118 5.118 5.118

(A) 1�3 5.062 5.061 5.060 5.059 5.058

5�3 5.037 5.036 5.036 5.036 5.035

10�3 5.037 5.036 5.036 5.035 5.035

15�3 5.036 5.036 5.036 5.035 5.035

17�3 5.036 5.036 5.036 5.035 b

2 0 5.125 5.125 5.125 5.125 5.125

(S) 1�3 5.054 5.053 5.052 5.051 5.050

5�3 5.040 5.039 5.039 5.039 5.039

10�3 5.039 5.039 5.039 5.039 5.038

15�3 5.039 5.039 5.039 5.039 b

17�3 5.039 5.039 5.039 b b

3 0 8.523 8.523 8.523 8.523 8.523

(S) 1�3 8.479 8.479 8.478 8.477 8.477

5�3 8.469 8.469 8.468 8.468 8.468

10�3 8.469 8.468 8.468 8.468 8.468

15�3 8.469 8.468 8.468 8.468 b

17�3 8.469 8.468 8.468 b b

4 0 11.33 11.33 11.33 11.33 11.33

(A) 1�3 11.05 11.05 11.05 11.04 11.03

5�3 10.94 10.93 10.93 10.93 10.93

10�3 10.93 10.93 10.93 10.93 10.93

15�3 10.93 10.93 10.93 10.93 10.93

17�3 10.93 10.93 10.93 10.93 b

5 0 11.35 11.35 11.35 11.35 11.35

(S) 1�3 11.11 11.10 11.10 11.10 11.10

5�3 11.06 11.06 11.06 11.06 11.06

10�3 11.06 11.06 11.06 11.06 11.06

15�3 11.06 11.06 11.06 11.06 b

17�3 11.06 11.06 11.06 b b

6 0 18.06 18.06 18.06 18.06 18.06

(A) 1�3 17.91 17.90 17.89 17.88 17.87

5�3 17.61 17.60 17.60 17.59 17.59

10�3 17.60 17.60 17.59 17.59 17.59

15�3 17.60 17.59 17.59 17.59 17.58

17�3 17.60 17.59 17.59 17.59 b

a (S) symmetric mode in y and (A) anti-symmetric mode in y.
b No results due to matrix ill-conditioning.

O.G. McGee III, J.W. Kim / Journal of Sound and Vibration 329 (2010) 457–484466
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Table 2

Convergence of frequency parameters oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for a completely free thick sectorial plate (a=3551, c/a=0, a/h=5).

Mode no. (symmetry classa) Size of edge functions Solution size of polynomials

14�3 15�3 16�3 17�3 18�3

1 0 5.084 5.083 5.083 5.082 5.082

(A) 1�3 4.179 4.160 4.138 4.123 4.105

5�3 2.625 2.620 2.618 2.615 2.614

10�3 2.617 2.615 2.612 2.611 2.609

20�3 2.615 2.613 2.611 2.610 2.608

30�3 2.614 2.612 2.610 2.609 2.608

40�3 2.614 2.612 2.610 2.609 2.607

2 0 5.144 5.143 5.143 5.142 5.141

(S) 1�3 4.335 4.312 4.296 4.278 4.265

5�3 4.053 4.050 4.050 4.048 4.047

10�3 4.049 4.047 4.046 4.045 4.045

20�3 4.048 4.046 4.046 4.044 4.044

30�3 4.048 4.046 4.046 4.044 4.044

40�3 4.048 4.046 4.046 4.044 4.044

3 0 11.26 11.26 11.26 11.26 11.25

(A) 1�3 8.323 8.293 8.256 8.234 8.205

5�3 7.175 7.173 7.171 7.169 7.168

10�3 7.164 7.163 7.162 7.162 7.161

20�3 7.163 7.162 7.161 7.161 7.160

30�3 7.162 7.162 7.161 7.161 7.160

40�3 7.162 7.162 7.161 7.161 7.160

4 0 8.508 8.506 8.505 8.504 8.503

(S) 1�3 7.482 7.464 7.452 7.438 7.428

5�3 7.221 7.219 7.218 7.217 7.216

10�3 7.218 7.216 7.216 7.215 7.214

20�3 7.217 7.215 7.215 7.214 7.214

30�3 7.217 7.215 7.215 7.214 7.214

40�3 7.217 7.215 7.215 7.214 7.214

5 0 11.40 11.39 11.39 11.39 11.39

(S) 1�3 10.77 10.77 10.76 10.76 10.75

5�3 10.58 10.58 10.58 10.58 10.57

10�3 10.57 10.57 10.57 10.57 10.57

20�3 10.57 10.57 10.57 10.57 10.57

30�3 10.57 10.57 10.57 10.57 10.57

40�3 10.57 10.57 10.57 10.57 10.57

6 0 17.98 17.98 17.98 17.98 17.98

(A) 1�3 13.52 13.50 13.48 13.46 13.45

5�3 12.96 12.95 12.94 12.93 12.92

10�3 12.89 12.89 12.89 12.88 12.88

20�3 12.89 12.89 12.88 12.88 12.88

30�3 12.89 12.89 12.88 12.88 12.87

40�3 12.89 12.88 12.88 12.87 12.87

a (S) symmetric mode in y and (A) anti-symmetric mode in y.
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In Table 1, consider the fundamental frequency mode which is an anti-symmetric one. The use of polynomial functions
alone results in the upper-bound convergence to an inaccurate oa2

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
value of 5.118. The trial set, consisting of the first

edge function (corresponding to the lowest l) along with as little as 13�3 polynomials, yields an upper-bound frequency
value, which is much lower than the first row of oa2

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
values obtained using no edge functions. An examination of

the next five rows of data reveals that an accurate oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
value to four significant figures is 5.035. To clearly

understand this behavior, the convergence of the fundamental frequency mode given in Table 1 is plotted in Fig. 3. A similar
level of convergence accuracy can be seen for the higher modes. It is seen in Table 1 that as the solution sizes of the hybrid
set of polynomials and edge functions increase, a slight deterioration in the overall convergence occurs due to the onset of
matrix ill-conditioning and numerical round-off errors. Despite the ill-conditioning, a convergence to three or four
significant figures is essentially achieved for the first six frequencies.

Table 2 explains the convergence of frequency parameter oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for a thick (a/h=5) circular plate having a much

deeper notch (c/a=0) and a 51 notch angle. In this case, the terminus of the V-notch is located at the plate center, resulting
in a sectorial plate. If one compares the convergence of frequencies in Table 2 with those in Table 1 for the circular plate
having a shallow notch effect (c/a=0.75), it is seen that for the deep notched plate, the convergence rate is slightly slower,
requiring more edge functions to accurately obtain frequency data (i.e., four significant figures). Whereas adding a trial set
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Table 3

Convergence of frequency parameters oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for a completely free cylinder having a V-notch (a=3551, c/a=0.75, h/a=2).

Mode no. (symmetry classa) Size of edge functions Solution size of polynomials

4�8 5�8 6�8 7�8 8�8

1 0 1.610 1.610 1.610 1.610 1.610

(A) 1�8 1.567 1.565 1.564 1.563 1.562

5�8 1.560 1.560 1.559 1.559 1.559

10�8 1.560 1.559 1.559 1.559 1.559

15�8 1.559 1.559 1.559 1.559 1.559

20�8 1.559 1.559 1.559 1.559 1.559

2 0 2.028 2.028 2.027 2.027 2.027

(A) 1�8 1.997 1.996 1.994 1.993 1.993

5�8 1.993 1.992 1.991 1.991 1.991

10�8 1.992 1.992 1.991 1.991 1.991

15�8 1.992 1.992 1.991 1.991 1.991

20�8 1.992 1.992 1.991 1.991 1.991

3 0 2.031 2.031 2.030 2.030 2.030

(S) 1�8 2.026 2.026 2.025 2.024 2.024

5�8 2.026 2.025 2.024 2.024 2.024

10�8 2.025 2.025 2.024 2.024 2.024

15�8 2.025 2.025 2.024 2.024 2.024

20�8 2.025 2.025 2.024 2.024 2.024

4 0 2.048 2.042 2.042 2.042 2.042

(S) 1�8 2.033 2.026 2.025 2.025 2.025

5�8 2.032 2.025 2.025 2.025 2.025

10�8 2.032 2.025 2.025 2.025 2.025

15�8 2.032 2.025 2.025 2.025 2.025

20�8 2.032 2.025 2.025 2.025 2.025

5 0 2.049 2.043 2.043 2.043 2.043

(A) 1�8 2.041 2.035 2.035 2.035 2.034

5�8 2.038 2.034 2.034 2.034 2.034

10�8 2.038 2.034 2.034 2.033 2.033

15�8 2.038 2.034 2.034 2.033 2.033

20�8 2.038 2.034 2.034 2.033 2.033

6 0 2.208 2.204 2.204 2.204 2.204

(A) 1�8 2.182 2.177 2.176 2.176 2.176

5�8 2.178 2.174 2.174 2.174 2.174

10�8 2.178 2.174 2.174 2.174 2.174

15�8 2.178 2.174 2.174 2.174 2.174

20�8 2.178 2.174 2.174 2.174 2.174

a (S) symmetric mode in y and (A) anti-symmetric mode in y.
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of 5�3 edge functions was sufficient to obtain frequencies accurate to three or four significant figures for c/a=0.75
(Table 1), additional edge functions (as many as 40�3) were required to achieve sufficient accuracy in some of the modes
of the sectorial plate (c/a=0) (Table 2).

Convergence studies for shallow (c/a=0.75) and deep (c/a=0) notched cylinder (h/a=2) having a notch angle of 51 are
shown in Tables 3 and 4, respectively. Frequency results are obtained as 4� 8, 5�8, 6� 8, 7�8 and 8�8 polynomial
solutions along with 0, 1�8, 5�8, 10�8, 15�8, and 20�8 solutions of 3-D edge functions are utilized. Note that a
reasonably sufficient seventh-order (i.e., eight-term) polynomial approximation in the z-direction was employed for the
edge function trial sets as well as the algebraic–trigonometric polynomial trial sets to properly represent cylindrical elastic
solid (h/a=2) transverse shear behaviors and to ensure accurate solutions. It should be also noted once again, like thick
circular plates with V-notches, that the first six modes are rigid body modes in the 3-D vibration of the completely free
cylindrical elastic solids having V-notches. These rigid body frequencies, which are zero, are not shown in the tables.
Compared with the data for the thick plates listed in Tables 1 and 2, it is seen that the oa2

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
convergence rate is much

faster and the numerical approximating influence of the edge functions is greater. Interestingly, for the shallow notched
cylinder (Table 3), a trial set consisting of the first edge function (corresponding to the lowest lm) along with 8�8
polynomials yields the converged oa2

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
values accurate to three significant figures for all modes (except the sixth

one). A four significant figures convergence of oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
is seen in Tables 3 and 4 for all modes, when 10�8 edge

functions are retained in the present Ritz procedure.
A z-polynomial trial function convergence study was also performed, but the findings of this analysis are not shown for

brevity. It was found that a cubic (i.e., four-term) approximation in the z-direction employed for the V-notched thick-plate
vibrations findings, and a seventh-order (i.e., eight-term) approximation in the z-direction employed for the V-notched
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Table 4

Convergence of frequency parameters oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for a completely free cylinder having a V-notch (a=3551, c/a=0, h/a=2).

Mode no. (symmetry classa) Size of edge functions Solution size of polynomials

4�8 5�8 6�8 7�8 8�8

1 0 2.040 2.038 2.038 2.038 2.038

(S) 1�8 0.723 0.720 0.719 0.719 0.718

5�8 0.671 0.670 0.670 0.669 0.669

10�8 0.671 0.670 0.669 0.669 0.669

15�8 0.671 0.670 0.669 0.669 0.669

20�8 0.671 0.670 0.669 0.669 0.669

2 0 1.608 1.608 1.608 1.608 1.607

(A) 1�8 0.846 0.837 0.831 0.829 0.826

5�8 0.813 0.810 0.809 0.808 0.808

10�8 0.810 0.809 0.808 0.808 0.807

15�8 0.810 0.809 0.808 0.808 0.807

20�8 0.810 0.809 0.808 0.808 0.807

3 0 2.046 2.040 2.039 2.038 2.038

(S) 1�8 1.093 1.080 1.077 1.073 1.071

5�8 1.060 1.056 1.055 1.055 1.054

10�8 1.059 1.056 1.055 1.054 1.054

15�8 1.059 1.056 1.055 1.054 1.054

20�8 1.059 1.055 1.055 1.054 1.054

4 0 2.016 2.015 2.014 2.013 2.013

(A) 1�8 1.603 1.592 1.585 1.582 1.580

5�8 1.579 1.567 1.566 1.565 1.564

10�8 1.574 1.565 1.564 1.564 1.564

15�8 1.573 1.565 1.564 1.564 1.564

20�8 1.573 1.565 1.564 1.564 1.564

5 0 2.055 2.047 2.047 2.047 2.047

(A) 1�8 1.653 1.644 1.640 1.636 1.634

5�8 1.621 1.618 1.618 1.617 1.616

10�8 1.619 1.617 1.617 1.616 1.616

15�8 1.619 1.617 1.617 1.616 1.616

20�8 1.619 1.617 1.617 1.616 1.616

6 0 2.200 2.191 2.190 2.190 2.819

(A) 1�8 1.866 1.855 1.852 1.850 1.849

5�8 1.822 1.816 1.815 1.814 1.813

10�8 1.819 1.815 1.814 1.813 1.813

15�8 1.819 1.814 1.814 1.813 1.813

20�8 1.819 1.814 1.814 1.813 1.813

a (S) symmetric mode in y and (A) anti-symmetric mode in y.
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cylindrical elastic solids were sufficiently accurate. This was the case when employing the algebraic–trigonometric
polynomial trial sets only (i.e., no edge functions). Nonetheless, the convergence acceleration of the edge functions using
comparable (four-term or eight-term) z-direction polynomial approximation were substantial and more essential to the
overall convergence rate of the hybrid trial sets compared in Tables 1–4, while at the same time properly representing
transverse shear and rotary inertia effects on the accurate solutions resulting from the reentrant terminus edge
singularities—the primary effect and focus of the present work. In the next section, sufficient comparisons of the present
findings to previously published results in the literature also serve to validate the accuracy of the present findings.
4. Non-dimensional frequency solutions of V-notched circular plates and cylinders

Extensive convergence studies were performed to compile the least upper-bound frequency parameters oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for

the first six modes of thick (a/h=5) circular plates and cylinders (h/a=2) having V-notches with various a and c/a. These
studies are summarized in Table 5 for the notched thick plates and in Table 6 for the notched cylinders, respectively.
Frequency data corresponding to the anti-symmetric modes with respect to y are indicated by an asterisk (*). All frequency
results are guaranteed upper-bounds to the exact values (accurate to the four significant figures). The solutions sizes of
polynomials (Eqs. (13) or (18)) and edge functions (Eqs. (14) and (16) or (19) and (20)) employed in Table 5 for the four
significant figure frequency convergence of completely free thick (a/h=5) circular plates with V-notches are summarized in
Chart A. The solutions sizes of polynomials (Eqs. (13) or (18)) and edge functions (Eqs. (14) and (16) or (19) and (20))
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Table 5

Frequency parameters oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for completely free thick (a/h=5) circular plates with V-notches.

a (deg) c/a Mode

1 2 3 4 5 6

90 0.75 6.511 8.292a 11.13 15.06a 17.37 22.76

0.5 7.989 10.60a 13.86 18.02a 22.53 28.42

0 14.14 19.80a 25.37 30.33a 36.98 42.62

�0.5 38.54 52.59a 56.77 67.48a 73.31a 80.91a

180 0.75 5.202a 5.580 8.937 11.83a 12.42 17.91a

0.5 5.733a 5.858 10.13 13.34a 14.37 17.68a

0 6.561 8.585a 15.84a 15.90 19.67 24.21a

�0.5 10.00 17.72a 18.55 24.17a 31.40 33.75a

270 0.75 5.022a 5.228 8.537 10.94a 11.60 17.86a

0.5 4.713a 5.439 8.380 10.35a 12.55 17.44

0 4.261a 5.616 8.642 11.35a 14.94a 16.37

�0.5 4.594a 5.999 10.66 11.50a 16.25a 21.28

300 0.75 5.025a 5.151 8.506 10.91a 11.39 17.71a

0.5 4.615a 5.212 8.276 9.762a 11.83 16.58a

0 3.516a 5.140 7.817 9.605a 13.89 14.24a

�0.5 2.995a 4.885 8.447 9.278a 12.31a 16.34a

330 0.75 5.030a 5.087 8.483 10.91a 11.20 17.63a

0.5 4.565a 4.993 8.226 9.286a 11.16 15.46a

0 2.961a 4.542 7.411 8.155a 11.90 13.62a

�0.5 2.005a 3.082 7.286 7.605a 9.911a 12.64

350 0.75 5.034a 5.048 8.471 10.92a 11.09 17.59a

0.5 4.549a 4.853 8.207 8.999a 10.74 14.76a

0 2.672a 4.141 7.249 7.345a 10.82 13.05a

�0.5 1.572a 3.194 6.832 6.693a 8.920a 10.81

355 0.75 5.035a 5.038 8.468 10.93a 11.06 17.58a

0.5 4.546a 4.819 8.204 8.927a 10.64 14.58a

0 2.607a 4.044 7.160a 7.214 10.57 12.87a

�0.5 1.486a 3.059 6.488a 6.745 8.732a 10.43

359 0.75 5.031 5.036a 8.466 10.93a 11.04 17.58a

0.5 4.544a 4.791 8.201 8.871a 10.56 14.44a

0 2.559a 3.968 7.107a 7.186 10.39 12.72a

�0.5 1.423a 2.956 6.330a 6.680 8.598a 10.13

Circular 5.119 5.119a 8.520 11.34a 11.340 18.06a

a Anti-symmetric modes y.
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employed to obtain in Table 6 the four significant figure frequency convergence of completely free cylinders (h/a=2) with
V-notches is summarized in Chart B.

For various terminus angles (a) of the completely free V-notched thick (a/h=5) circular plates, some interesting trends
can be seen in Table 5 regarding the variation of oa2

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
as c/a decreases. It is clear that for a=3301, 3501, 3551, and

3591, the frequency values in the first six modes monotonically decrease with decreasing c/a. At a=3001, a reversal of the
above cited trends develops quite significantly. For instance, the fundamental values of oa2

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
in this case

monotonically decrease with decreasing c/a, while some of the higher mode values of oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
are increased with

decreasing c/a. At small terminus angle (a=2701), a similar frequency increase with notch depth is observed in all modes.
The frequency increase is more substantial for plates with a=901 and for semi-circular plates (a=1801) as c/a is decreased.
Clearly, the plates with a=901 and 1801 do not form a V-notch. Nonetheless, the oa2

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
values for a=901 do indicate

some interesting new vibration solutions for the special cases of thick segmented plates with decreasing c/a (Fig. 4), for
which no previously published frequency results are known to exist. For a c/a value of 0.5, 0, and �0.5, oa2

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
is seen

in Table 5 to be significantly decreased as the terminus angle a is increased. At c/a=0.75, the frequency changes with
increasing a are less dramatic and largely unpredictable; that is, they sometimes display an increase or a decrease with
increasing a, depending on the symmetry associated with the mode.

The frequency data listed in Table 5 are compared with the data for a complete circular thick plate obtained by using the
present 3-D analysis. For the case of a sharp, shallow crack (i.e., c/a=0.75 and a=3591), the crack reduces the frequencies of
the symmetric modes 1, 3, and 5 by 1.72, 0.63, and 2.65 percent, respectively, and those of the anti-symmetric modes 2, 4,
and 6 by 1.62, 3.62, and 2.66 percent, respectively. In general, it is shown in Table 5 that the presence of a V-notch (i.e.,
aZ2701) decreases the fundamental frequency of a completely free thick circular plate, and that shallow notches (c/a=0.75)
cause approximately the same decrease (1.7–1.9 percent), regardless of the terminus angle. A sharp notch (aZ3301) or
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Table 6

Frequency parameters oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for completely free cylinders (h/a=2) with V-notches.

a (deg) c/a Mode

1 2 3 4 5 6

90 0.75 1.508a 1.885 1.975a 2.275 2.344a 2.459

0.5 1.472a 1.774 1.924a 2.468a 2.493 2.515

0 1.387a 1.457 1.726a 2.548 2.724a 2.771

�0.5 0.916 1.265a 1.273a 2.123 2.535a 2.583

180 0.75 1.551a 1.976 2.052a 2.062a 2.140 2.197a

0.5 1.428a 1.862 2.066a 2.123a 2.179 2.325

0 1.179a 1.556 2.012a 2.058 2.191 2.219a

�0.5 0.863a 1.011 1.695a 1.914 1.993 1.998a

270 0.75 1.564a 1.991a 2.019 2.043a 2.068 2.179a

0.5 1.393a 1.820 1.945a 2.015 2.026a 2.101

0 0.977a 1.102 1.439 1.854a 1.908 1.922a

�0.5 0.606 0.623 0.971 1.454a 1.539 1.732a

300 0.75 1.564a 1.991a 2.023 2.040a 2.051 2.177a

0.5 1.383a 1.727 1.912a 1.944 2.015a 2.080

0 0.913a 0.913 1.274 1.815a 1.849a 1.947a

�0.5 0.430 0.562a 0.828 1.359a 1.584a 1.598a

330 0.75 1.562a 1.991a 2.025 2.036 2.036a 2.175a

0.5 1.371a 1.616 1.865 1.885a 2.003a 2.071

0 0.765 0.853a 1.143 1.708a 1.732a 1.851a

�0.5 0.320 0.504 0.737 1.166a 1.397a 1.626a

350 0.75 1.560a 1.991a 2.025 2.026 2.034a 2.174a

0.5 1.362a 1.538 1.806 1.870a 1.996a 2.065

0 0.687 0.816a 1.070 1.593a 1.639a 1.819a

�0.5 0.272 0.469a 0.692 1.054a 1.302a 1.598a

355 0.75 1.559a 1.991a 2.024 2.025 2.033a 2.174a

0.5 1.359a 1.518 1.790 1.866a 1.995a 2.064

0 0.669 0.807a 1.054 1.564a 1.616a 1.813a

�0.5 0.262 0.461a 0.682 1.029a 1.281a 1.594a

359 0.75 1.559a 1.991a 2.022 2.025 2.033a 2.173a

0.5 1.357a 1.502 1.777 1.863a 1.993a 2.062

0 0.656 0.800a 1.041 1.540a 1.598a 1.808a

�0.5 0.255 0.455a 0.674 1.009a 1.265a 1.591a

Circular 1.610a 2.027a 2.027 2.043 2.043a 2.204a

a Anti-symmetric modes y.
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crack is seen further to decrease all first six frequencies from those of the complete circular plate. A notch of large angle
(i.e., smaller a, such as ar3001) causes a decrease in the fundamental frequency, but the higher frequencies may be
decreased by the notch. For such modes, the decreased mass of the plate is more significant than its decreased stiffness.

In Table 6, it is seen that for the completely free V-notched (i.e., aZ2701) cylinders (h/a=2), the frequency parameters
oa2

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
in the first six modes decrease with decreasing c/a. For cylinders with a=901 and for semi-circular cylinders

(a=1801), the fundamental values of oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
decrease with decreasing c/a, whereas some of the higher mode values of

oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
increase with decreasing c/a. It should be noted that the cylinders with a=901 and 1801 do not form a V-notch.

The frequency data for a=901 do indicate some interesting special cases of segmented cylinders with decreasing c/a (Fig. 4),
for which no previously published frequency results are known to exist. For a c/a value of 0.5, 0, and �0.5, the frequency
parameters oa2

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
are seen in Table 6 to decrease, as the terminus angle a is increased, except in the second and third

modes for a=1801. For the cylinders with a shallow notch (c/a=0.75), the frequency changes with increasing a are less
dramatic and largely unpredictable; that is, as seen for the thick circular plates with a shallow notch, the frequency
parameters oa2

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
of the shallow-notched cylinders sometimes exhibit an increase or a decrease with increasing a,

depending on the symmetry associated with the mode.
The frequency data listed in Table 6 are compared with the data for a complete circular cylinder obtained by using the

present 3-D analysis. For the case of a sharp, shallow crack (i.e., c/a=0.75 and a=3591), the crack reduces the frequencies of
the symmetric modes 3 and 4 by 0.25 and 0.88 percent, respectively, and those of the anti-symmetric modes 1, 2, 5, and 6
by 3.17, 1.78, 0.49, and 1.41 percent, respectively. In general, it is shown in Table 6 that the presence of a V-notch reduces the
fundamental frequency of complete circular cylinders, and that the presence of a shallow notches (c/a=0.75) cause
approximately the same decrease within the range of 2.9–3.2 percent.
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α

(degrees)

c/a Polynomials Edge 

Functions 

90, 180 0.75 

0.5 

0

-0.5

18 3

18 3

18 3

18 3

0

0

0

0

270 0.75 

0.5 

0

-0.5

18 3

18 3

18 3

18 3

2 3 (1 3)*

2 3 (1 3)

2 3 (1 3)

2 3 (1 3)

300 0.75 

0.5 

0

-0.5

18 3

18 3

18 3

18 3

4 3 (2 3)

4 3 (2 3)

4 3 (2 3)

4 3 (2 3)

330 0.75 

0.5 

0

-0.5

18 3

18 3

18 3

18 3

10 3 (5 3) 

10 3 (5 3) 

10 3 (5 3) 

10 3 (5 3) 

350 0.75 

0.5 

0

-0.5

17 3 (18 3)

18 3

17 3

17 3

10 3

10 3

40 3

40 3

355, 359 0.75 

0.5 

0

-0.5

17 3 (18 3)

18 3

18 3

18 3

10 3

10 3 (20 3)

40 3

40 3

Chart A. Solutions sizes of polynomials (Eq. (13) or (18)) and edge functions (Eqs. (14) and (16) or (19) and (20)) employed in Table 5. ( )*: solution size for

anti-symmetric modes in y.
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5. Comparison studies

Comparisons are made in Tables 7 and 8 for frequency parameters oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
of shallow-notched (c/a=0.75) circular

plates with a notch angle of 51 and complete circular plates, having a/h=20, 10, and 5. Table 7 lists oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
values for the

symmetric modes in y, whereas Table 8 presents oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
values for the anti-symmetric modes in y. Frequency results

obtained by the present 3-D method are compared with those recently reported in a classical thin plate Ritz analysis [33]
and those produced by using a Mindlin plate theory [35,36,43]. The frequency solutions for the Mindlin plates were
obtained using two different shear correction factor, namely k2=p2/12 [35] and k2 ¼ 5

6 [48]. Table 9 presents percent
differences between frequencies from the Mindlin plate theory [36,43] and the present 3-D results.

In Mindlin plate theory [36,43], bending moments and transverse shear forces at the vertex of a V-notch vary as rlk�1

and rlk , respectively. The moments in the region of the vertex (r=0) become infinite (i.e., singular) for 0olko1 (obtained
from [36] using characteristic equations akin to Eqs. (15) shown herein). The singular transverse shear forces at r=0 exist for
�1olko0. For lk41 and lk40, no singular moments and shear forces exist at the vertex of the V-notch. For 0olko1 and
�1olko0, use of the Mindlin corner functions in conjunction with the algebraic–trigonometric polynomials permits
proper representation of the reentrant corner stress singularities for the vibration of the completely free Mindlin circular
plate having the V-notch. For a=3551, the smallest lk of the symmetric mode is 0.014 [36]. Here, the corner functions do not
account for the singular shear forces at the reentrant vertex of the V-notch.

Similarly, according to the 3-D elasticity theory, tri-axial stresses along the V-notch terminus edge (r=0) become
singular for 0olmo1 and 0olmo1 (see Eqs. (15)). For lm41, normal (sr, sy, and sz) and in-plane shear ðtryÞ stress
singularities are not present along the V-notch terminus edge. For lm41, no singular transverse shear stresses (trz and tyz)
exist along the terminus edge. For a=3551, the smallest lm of symmetric mode is 1.014 [34]. Here, the 3-D edge functions do
not account for the singular transverse shear stresses along the reentrant terminus edge of the V-notch and these functions
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α

(degrees)

c/a Polynomials Edge 

Functions 

90, 180 0.75 

0.5 

0

-0.5

8 8

8 8

8 8

8 8

0

0

0

0

270 0.75 

0.5 

0

-0.5

8 8

8 8

8 8

8 8

2 8 (1 8)*

2 3 (1 8)

2 8 (1 8)

2 8 (1 8)

300 0.75 

0.5 

0

-0.5

8 8

8 8

8 8

8 8

4 8 (2 8)

4 8 (2 8)

4 8 (2 8)

4 8 (2 8)

330 0.75 

0.5 

0

-0.5

8 8

8 8

8 8

8 8

10 8 (5 8) 

10 8 (5 8) 

10 8 (5 8) 

10 8 (5 8)

350 0.75 

0.5 

0

-0.5

8 8

8 8

8 8

8 8

10 8

10 8

20 8

20 8

355, 359 0.75 

0.5 

0

-0.5

8 8

8 8

8 8

8 8

10 8

20 8

20 8

20 8

Chart B. Solutions sizes of polynomials (Eq. (13) or (18)) and edge functions (Eqs. (14) and (16) or (19) and (20)) employed in Table 6. ( )*: solution size for

anti-symmetric modes in y.
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are only admissible. Fig. 5 depicts polynomial spaces approximated in the present Ritz procedure. It should be noticed in
Fig. 5 that the mathematically complete algebraic–trigonometric polynomials are necessary and sufficient for the
convergence of the Ritz procedure, whereas comparison functions (i.e., corner/edge functions) that satisfy both geometric
and natural boundary conditions are sufficient, but not necessary for the convergence of the Ritz analysis. The admissible
singularity functions (hatched portion in Fig. 5), which explicitly account for the reentrant corner/edge stress singularities,
is the metric of the present solution.

In Tables 7 and 8, it is seen that the present 3-D elasticity-based theory gives substantially lower oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
values than

those of the classical plate theory, even for large thickness ratio of a/h=20, due to the inherent shear deformation and rotary
inertia. The present 3-D oa2

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
values, however, have favorable agreement with oa2

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
values obtained by the

Mindlin plate theory [36,43]. The influence of shear forces is reflected in the potential energy of the present 3-D and
Mindlin plate theory [36,43], whereas such forces are inherently absent from the potential energy derived from the
classical plate theory. For the notched plates, the percent differences between the 3-D oa2

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
values and Mindlin

oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
values (using Reissner’s k2=5/6) are only between 0.04 and 0.40 percent (Table 9).

Interestingly, the frequency percentage differences between the present 3-D and Mindlin theories are seen in Table 9 to
be higher in the anti-symmetric modes than those in the symmetric modes. It is also seen in Table 9 that for the anti-
symmetric modes, the frequency percentage differences of the notched plates are slightly more pronounced than those of
the complete circular plates. As discussed previously, for the symmetric modes (here, the smallest l40 and the smallest
l41), corner/edge functions do not account for transverse shear stress singularities at the re-entrant vertex/terminus of
the V-notch. The shear stress singularities do not also exist for the circular plates. Clearly, one can see that the transverse
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c/a = 0.75

c/a = 0.5
c/a = 0

α = 90° c/a = -0.5

Fig. 4. Plate with a=901 and various c/a ratios.

Table 7

Comparison of frequency parameters oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for completely free circular plates having a V-notch with symmetric modes in y (c/a=0.75).

a/h Mode no. a=3551 Circular

CPTa MPTb 3Dc CPTa MPTb 3Dc

p2/12d 5/6d p2/12d 5/6d

20 1 5.298 5.262 5.262 5.266 5.358 5.330 5.330 5.330

2 8.969 8.929 8.929 8.933 9.003 8.969 8.969 8.970

3 12.20 12.05 12.05 12.06 12.44 12.31 12.31 12.32

10 1 5.298 5.202 5.203 5.204 5.358 5.278 5.278 5.279

2 8.969 8.822 8.823 8.827 9.003 8.868 8.869 8.872

3 12.20 11.78 11.78 11.79 12.44 12.06 12.07 12.07

5 1 5.298 5.033 5.035 5.038 5.358 5.114 5.116 5.119

2 8.969 8.453 8.456 8.468 9.003 8.505 8.508 8.520

3 12.20 11.03 11.04 11.06 12.44 11.31 11.32 11.34

a Classical thin plate theory [33].
b Mindlin plate theory [36,43].
c Present 3-D elasticity theory.
d Shear correction factor, k2.
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shear singularities derived from the 3-D elasticity theory and Mindlin plate theory do not contribute to the frequency
convergence for the symmetric modes.

Similar comparisons are made in Tables 10 and 11 for frequency parameters oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for deep (c/a=0) notched plates

with a notch angle of 51 and a/h=20, 10, and 5. Symmetric mode oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
values are listed in Table 10 and the anti-

symmetric oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
values are shown in Table 11. Also given in Table 12, are percent differences between the oa2

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
values calculated using the Mindlin plate theory [36,43] and the present 3-D elasticity-based analysis. As would be
expected, it is seen in Tables 10 and 11 that the classical plate theory gives substantially higher oa2

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
values than

those of the present 3-D and Mindlin theories. The frequency parameters oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
obtained from the present 3-D

elasticity theory and the Mindlin plate theory [36,43] are in close agreement. For the sectorial plates (c/a=0), the percent
differences between the 3-D oa2

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
values and Mindlin oa2

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
values (using k2=5/6) are seen in Table 12 to be

only between 0.14 and 0.51 percent.
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Table 8

Comparison of frequency parameters oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for completely free circular plates having a V-notch with anti-symmetric modes in y (c/a=0.75).

a/h Mode no. a=3551 Circular

CPTa MPTb 3Dc CPTa MPTb 3Dc

p2/12d 5/6d p2/12d 5/6d

20 1 5.286 5.263 5.263 5.265 5.358 5.330 5.330 5.330

2 12.10 11.99 11.99 12.01 12.44 12.31 12.31 12.32

3 20.27 20.07 20.07 20.10 20.48 20.26 20.26 20.27

10 1 5.286 5.201 5.201 5.204 5.358 5.278 5.278 5.279

2 12.10 11.69 11.69 11.70 12.44 12.06 12.07 12.07

3 20.27 19.41 19.41 19.45 20.48 19.71 19.72 19.74

5 1 2.286 5.028 5.030 5.035 5.358 5.114 5.116 5.119

2 12.10 10.89 10.90 10.93 12.44 11.31 11.32 11.34

3 20.27 17.49 17.51 17.58 20.48 17.98 17.99 18.06

a Classical thin plate theory [33].
b Mindlin plate theory [36,43].
c Present 3-D elasticity theory.
d Shear correction factor, k2.

Table 9
Percent frequency differences of completely free circular plates having a V-notch between 3-D elasticity theory and Mindlin plate theory (a=3551,

c/a=0.75).

a/h Mode no. Notched Circular

Sa Ab Sa Ab

3D-Mc 3D-Md 3D-Mc 3D-Md 3D-Mc 3D-Md 3D-Mc 3D-Md

20 1 0.08 0.08 0.04 0.04 0.00 0.00 0.00 0.00

2 0.04 0.04 0.17 0.17 0.01 0.01 0.08 0.08

3 0.08 0.08 0.15 0.15 0.08 0.08 0.05 0.05

10 1 0.04 0.02 0.06 0.06 0.02 0.02 0.02 0.02

2 0.06 0.05 0.09 0.09 0.05 0.03 0.08 0.00

3 0.08 0.08 0.21 0.21 0.08 0.00 0.15 0.10

5 1 0.10 0.06 0.14 0.10 0.10 0.06 0.10 0.06

2 0.18 0.14 0.37 0.27 0.18 0.14 0.26 0.18

3 0.27 0.18 0.51 0.40 0.26 0.18 0.44 0.39

a Symmetric mode in y.
b Anti-symmetric mode in y.
c Mindlin plate theory using k2=p2/12.
d Mindlin plate theory using k2=5/6.
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Tables 13 and 14 present the first six frequency parameters oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
of completely free and cantilevered solid rods

and cylinders having a deep radial crack (i.e., c/a=0 and a=3591), respectively, for h/a=2, 4, 6, and 10. Here, the cylinders of
h/a=6 and 10 may be considered as V-notched and cracked slender rods—for which newly published 3-D vibration
solutions are given in Tables 13 and 14, extending the work of Leissa and So [23,24] and So and Leissa [25]. For all h/a ratios,
converged frequencies of a cracked solid rod or cylinder are obtained as 8�8 polynomial trial solutions are used in
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Table 10

Comparison of frequency parameters oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for completely free sectorial plates with symmetric modes in y (c/a=0).

a/h Mode no. a=3551 Circular

CPTa MPTb 3Dc CPTa MPTb 3Dc

p2/12d 5/6d p2/12d 5/6d

20 1 4.383 4.316 4.316 4.324 5.358 5.330 5.330 5.330

2 7.746 7.673 7.673 7.682 9.003 8.969 8.969 8.970

3 11.58 11.46 11.46 11.47 12.44 12.31 12.31 12.32

10 1 4.383 4.228 4.229 4.235 5.358 5.278 5.278 5.279

2 7.746 7.548 7.549 7.556 9.003 8.868 8.869 8.872

3 11.58 11.23 11.23 11.24 12.44 12.06 12.07 12.07

5 1 4.383 4.037 4.038 4.044 5.358 5.114 5.116 5.119

2 7.746 7.200 7.203 7.214 9.003 8.505 8.508 8.520

3 11.58 10.55 10.56 10.57 12.44 11.31 11.32 11.34

a Classical thin plate theory [33].
b Mindlin plate theory [36,43].
c Present 3-D elasticity theory.
d Shear correction factor, k2.

Table 11

Comparison of frequency parameters oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for completely free sectorial plates with anti-symmetric modes in y (c/a=0).

a/h Mode no. a=3551 Circular

CPTa MPTb 3Dc CPTa MPTb 3Dc

p2/12d 5/6d p2/12d 5/6d

20 1 2.822 2.805 2.806 2.817 5.358 5.330 5.330 5.330

2 7.839 7.747 7.748 7.761 12.44 12.31 12.31 12.32

3 15.18 14.88 14.88 14.93 20.48 20.26 20.26 20.27

10 1 2.822 2.729 2.730 2.744 5.358 5.278 5.278 5.279

2 7.839 7.577 7.579 7.588 12.44 12.06 12.07 12.07

3 15.18 14.29 14.30 14.33 20.48 19.71 19.72 19.74

5 1 2.822 2.594 2.596 2.607 5.358 5.114 5.116 5.119

2 7.839 7.146 7.150 7.160 12.44 11.31 11.32 11.34

3 15.18 12.81 12.82 12.88 20.48 17.98 17.99 18.06

a Classical thin plate theory [33].
b Mindlin plate theory [36,43].
c Present 3-D elasticity theory.
d Shear correction factor, k2.
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conjunction with 20�8 trial sets of 3-D edge functions. For the cantilevered solid rods and cylinders, the zk series indices
were simply and appropriately adjusted to k=1,2,3,y in Eqs. (12)–(20) to ensure the proper kinematic conditions of the
restrained end at z=0 was satisfied, producing the proper admissibility of the hybrid series of algebraic–trigonometric
polynomials and edge functions employed in calculating the solutions.

In Tables 13 and 14, the frequency results for the cracked solid rods and cylinders are compared with those predicted for
completely circular solid rods and cylinders (i.e., no crack). Extending Hutchinson’s infinite circular cylinder solution based
on the technique of variables separation, Mofakhamia et al. [49] recently offered a general solution as a semi-analytical
series to analyze the vibration of finite solid and hollow circular cylinders with various end conditions, namely completely
free and clamped ends. Specifically, the 3-D Navier displacement equations governing the motion of an isotropic solid
media was transformed to scalar and vector potentials using a Helmholtz decomposition, and then through separation of
variables, obtain an ordinary and modified Bessel functions series solution. The Mofakhamia et al. [49] general solution for
the scalar and vector potentials was used to analyze the wave propagation of infinite or finite circular cylinders.
Benchmarking against the general solution for the scalar and vector potentials investigated by Gazis [5] for infinite circular
cylinders, the Mofakhamia et al. [49] closed-form solutions yielded more coefficients in their truncated series evaluation of
free vibration characteristics of finite circular cylinders with various end conditions. In contrast to Hutchinson’s studies on
the vibration of free-end circular cylinders, additional series terms were also suggested by Mofakhamia et al. [49] to be
included in the solution of the infinite cylinders. In the Mofakhamia ordinary and modified Bessel series, general end
conditions were approximately satisfied using an orthogonalization technique. The general semi-analytical Bessel solution
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Table 12
Percent frequency differences of completely free sectorial plates between 3-D elasticity theory and Mindlin plate theory (a=3551, c/a=0).

a/h Mode no. Sectorial Circular

Sa Ab Sa Ab

3D-Mc 3D-Md 3D-Mc 3D-Md 3D-Mc 3D-Md 3D-Mc 3D-Md

20 1 0.19 0.19 0.43 0.39 0.00 0.00 0.00 0.00

2 0.12 0.12 0.18 0.17 0.01 0.01 0.08 0.08

3 0.09 0.09 0.33 0.33 0.08 0.08 0.05 0.05

10 1 0.17 0.14 0.55 0.51 0.02 0.02 0.02 0.02

2 0.11 0.09 0.14 0.12 0.05 0.03 0.08 0.00

3 0.09 0.09 0.28 0.21 0.08 0.00 0.15 0.10

5 1 0.17 0.15 0.50 0.42 0.10 0.06 0.10 0.06

2 0.19 0.15 0.20 0.14 0.18 0.14 0.26 0.18

3 0.19 0.05 0.54 0.47 0.26 0.18 0.44 0.39

a Symmetric mode in y.
b Anti-symmetric mode in y.
c Mindlin plate theory using k2=p2/12.
d Mindlin plate theory using k2=5/6.

Table 13

Frequency parameters oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for completely free solid rods and cylinders with a radial crack (c/a=0).

h/a Mode no. Symmetric mode in y Anti-symmetric mode in y

a=3591 Circular a=3591 Circular

3Da 3Da 3Db 3Da 3Da 3Db

2 1 0.656 2.027 2.027 0.800 1.610 1.610

2 1.041 2.043 2.043 1.540 2.027 2.027

3 1.916 2.204 2.204 1.598 2.043 2.043

4 1 0.332 0.396 0.397 0.278 0.396 0.397

2 0.395 0.639 0.639 0.358 0.402 0.402

3 0.402 0.733 0.733 0.604 0.733 0.733

6 1 0.138 0.138 0.138 0.128 0.138 0.138

2 0.222 0.287 0.287 0.131 0.179 0.179

3 0.244 0.298 0.298 0.267 0.298 0.298

10 1 0.034 0.034 0.034 0.032 0.034 0.034

2 0.082 0.082 0.082 0.048 0.064 0.064

3 0.104 0.104 0.104 0.075 0.082 0.082

a Present 3-D elasticity theory.
b Leissa and So [23,24]; So and Leissa [25]; Zhou et al. [30]; and Mofakhamia et al. [49].
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covered various cases of finite length cylinders, such as rods and cylinders with various end conditions. Compared with
previously developed Bessel series solutions, highly accurate and converged non-dimensional frequencies were reported in
Mofakhamia et al. [49] using smaller solution matrices. Exact non-dimensional frequency ratios from the Mofakhamia
series were reported with an error tolerance of 0.00001.

Numerical prediction agreement up to four significant figures for frequency parameters oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for completely free

solid rods and cylinders with no a radial crack (c/a=0) are posted in Table 13 (Poisson’s ratio assumed as 0.3). It is shown
that the results obtained from the present 3-D elasticity-based Ritz analysis are in good agreement with those obtained
using previously developed methods. It can be inferred that up to four significant figure accurate frequency parameters
oa2

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
has been achieved amongst previously published 3-D elasticity closed-form solutions of Hutchinson and

El-Azhari [21], and Mofakhamia et al. [49] and amongst previously published 3-D elasticity-based Ritz solutions of Leissa
and So [23,24], So and Leissa [25], and Zhou et al. [30].

It is seen in Tables 13 and 14 that the frequency reductions due to the length scale of a radial crack are generally less
significant as h/a ratios increase. In Table 13, the maximum frequency reduction of 67.6 percent due to the radial crack
appears in the first symmetric mode for the completely free thick cylinders having h/a=2. For a completely free slender rod
having h/a=10, symmetric frequency reductions due to the presence of the radial crack are negligible. Whereas, for the
slender rod (h/a=10), a crack decreases the frequencies of the anti-symmetric modes by 5.9, 25.0, and 8.5 percent,
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Table 14

Frequency parameters oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for cantilevered solid rods and cylinders with a radial crack (c/a=0).

h/a Mode no. Symmetric mode in y Anti-symmetric mode in y

a=3591 Circular a=3591 Circular

3Da 3Da 3Db 3Da 3Da 3Db

2 1 0.515 0.518 0.518 0.458 0.518 0.518

2 0.868 1.318 1.318 0.731 0.805 0.805

3 1.317 1.479 1.480 1.409 1.479 1.480

4 1 0.082 0.082 0.082 0.076 0.082 0.082

2 0.327 0.328 0.328 0.171 0.202 0.202

3 0.332 0.333 0.333 0.303 0.333 0.333

6 1 0.026 0.026 0.026 0.025 0.026 0.026

2 0.124 0.124 0.124 0.073 0.089 0.089

3 0.145 0.145 0.145 0.113 0.124 0.124

10 1 0.006 0.006 0.006 0.006 0.006 0.006

2 0.032 0.032 0.032 0.025 0.032 0.032

3 0.052 0.052 0.052 0.031 0.032 0.032

a Present 3-D elasticity theory.
b Leissa and So [23,24] and So and Leissa [25].

Fig. 6. Normalized displacement contours for a completely free thick sectorial plate (a=3551, c/a=0, a/h=5), results compared to a thick sectorial Mindlin

plate [21,32].
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respectively. For a thick cantilevered cylinders having h/a=2, the maximum reduction due to the crack is seen in Table 14 to
be 34.1 percent in the second symmetric mode. For cracked cantilevered slender rods (h/a=6 and 10), reductions in
oa2

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
values of the symmetric modes are negligible, whereas a radial crack decreases the oa2

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
values of the

anti-symmetric modes by 3.8, 18.0, and 8.9 percent for h/a=6 and by 1.8, 21.9, and 5.3 percent for h/a=10.
Shown in Fig. 6 are normalized displacement contours for a thick (a/h=5) sectorial plate (c/a=0) with a notch angle of 51.

These contour plots are normalized at the middle surface of the sectorial plate with respect to the maximum in-plane and
transverse displacement components (i.e., �1rUr=Urmaxr1, �1rVy=Vymax

r1, and �1rWz=Wzmaxr1, where the negative
Ur=Urmax , Vy=Vymax

, and Wz=Wzmax are depicted as dashed contour lines in Fig. 6, and non-dimensional frequencies shown
correspond to the data listed in Tables 10 and 11). Nodal patterns of each mode are shown in Fig. 6 as darker contour lines of
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Fig. 7. Normalized displacement contours for a completely free cylinder having a deep radial crack (a=3591 c/a=0, h/a=2).
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zero displacements during vibratory motion. For Ur=Urmax and Wz=Wzmax contours, a horizontal nodal line passes through the
terminus edge of the notch in the anti-symmetric modes. In contrast, for Vy=Vymax

contours, that nodal line passes through
the terminus edge of the notch in the symmetric modes. It is also seen in Fig. 6 that a sharp radial notch causes radial nodal
lines extending from the terminus edge of the notch to the circumferential edge in the first anti-symmetric mode of the
normalized transverse displacement contours ðWz=Wzmax Þ. More specifically, it can be seen in Fig. 6 that the influence on the
ðWz=Wzmax Þ contours of 3-D in-plane (rl�1-type) stress singularities and transverse (rl-type singularity) stress singularities
along the V-notch terminus edge of a thick (a/h=5) sectorial plate (c/a=0) with a notch angle of 51 have been compared to
the influence on the ðWz=Wzmax Þ contours of the order of singularities for bending moments (rl�1-type singularity) and
shear forces (rl-type singularity) at the vertex of a thick sectorial Mindlin plate (where l and l are real or complex
characteristic values for Mindlin plate [36,43] and 3-D elasticity-based [34] theories). The ðWz=Wzmax Þ contours predicted
using the present 3-D elasticity theory are seen in Fig. 6 to be in favorable agreement with those predicted using Mindlin
plate theory [36,43]. It has been also shown in Fig. 6 that the 3-D frequency solutions are in close agreement, as slightly
higher upper bounds on the exact solution, compared with frequency results obtained by the Mindlin plate theory.

In Fig. 7, additional normalized displacement contours are plotted for a completely free cylinder having a notch angle of
11, c/a=0 (idealizing a sharp, deep radial crack), and h/a=2. These contour plots are normalized at the top surface of the
cracked cylinder with respect to the maximum in-plane and transverse displacement components and non-dimensional
frequencies shown correspond to the data listed in Table 13. In the first and second symmetric mode of Wz=Wzmax contours,
the sharp curvature and distortion of the nodal lines is quite apparent due to the notch effect, more so for the cracked
cylinder (Fig. 7) than the notched thick circular plate (Fig. 6). Interestingly, the radial nodal lines in the first anti-symmetric
mode of Wz=Wzmax contours shift away from the terminus edge of the notch. Comparing the normalized displacement
contours and nodal patterns plotted in Figs. 6 and 7, it can be generally induced that the analogous classical Chaldni-type
laboratory circular configuration vibration nodal pattern observations and findings [1] are predicted herein, for a notched
or cracked thick sectorial plate (a/h=5) or cylinder solid (h/a=2), as significantly shifted by the singular stresses existing at
the re-entrant terminus edge of the notch or crack.
6. Concluding remarks and further studies

In this work, it has been demonstrated that accurate non-dimensional frequencies and normalized displacement
contours of V-notched cylindrical elastic solids can be predicted using a 3-D elasticity-based, reduced-order, weak
formulation, variational Ritz procedure. No simplifying kinematic assumptions have been made on the strain distribution
through the thickness of the elastic bodies, as typically used in rod, beam, plate and shell theories. The 3-D elasticity-based
dynamical energies in the procedure incorporate for the in-plane and transverse displacement fields admissible hybrid trial
functions of mathematically complete, algebraic–trigonometric polynomials in conjunction with admissible edge functions
[34], which account for the tri-axial stress singularities occurring at the terminus edge/corner of a V-notch or a sharp radial
crack. Depending on the boundary or face conditions existing, one must derive the alternate admissible forms of the
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algebraic–trigonometric polynomials and edge functions used. The efficacy of the 3-D edge functions has been
substantiated through an extensive convergence study of non-dimensional frequencies. It was seen that the edge
functions accelerate the convergence rate of solutions.

The numerical results presented herein demonstrate the correctness and accuracy of the 3-D Ritz procedure utilized in
this work. This is further substantiated by extensive convergence studies carried out for non-dimensional frequency
parameters oa2

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
used in this work. Extensive amount of non-dimensional frequency oa2

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
data presented

clearly indicates the influence of the edge functions on the upper-bound convergence of frequency solutions.
Detailed frequency data has been provided herein for completely free V-notched plates and for completely free and

cantilevered cracked solid rods and cylinders using 3-D theory of elasticity. This provides the data which can be utilized to
derive some fundamental understanding regarding the effect of stresses on the V-notched cylinders and thick circular
plates used in industry applications for mechanical and structural systems. Detailed numerical tables of oa2

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
(accurate up to four significant figures) for notched thick plates and cylinders have been presented for a wide range of notch
depths c/a, vertex angles a, plate thickness ratios (a/h) and cylindrical height ratios (h/a). The frequency variation with
notch depth was considerable, as expected, with larger variation in higher ranges of a, and smaller variation in lower ranges
of a. The results have been compared with those obtained by Mindlin plate theory [36,43] and the classical thin plate
theory [33]. Specifically, the influence of 3-D in-plane (rl�1-type) stress singularities and transverse (rl-type singularity)
stress singularities along the V-notch terminus edge of elastic solids have been compared to the influence of the order of
singularities for bending moments (rl�1-type singularity) and shear forces (rl-type singularity) at the vertex of Mindlin
sectorial plate (where l and l are real or complex characteristic values for Mindlin plate [36,43], and 3-D elasticity-based
[34] theories). It has been observed that Mindlin plate theory and 3-D theory of elasticity present significantly lower upper
bounds on the exact solutions compared to the upper bound frequency predicted using classical thin plate theory [33].
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Fig. A1. Arbitrarily shaped elastic solids having a V-notch or sharp radial crack: (a) elliptical, (b) rectangular, (c) rhombus, (d) parallelogram, (e) trapezoid,

and (f) N-sided polygon.
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It has been also concluded that the 3-D frequency solutions are slightly higher upper bounds on the exact solution
compared with the upper bound frequency results obtained by the Mindlin plate theory.

In reality, for a4180̂, highly localized stresses at the vertex/terminus of sharp notches or cracks may become
detrimental in connection with vibration, by constituting an origin for crack propagation during fatigue and a source of
stress intensity at fracture. Some fundamental understanding of the effect of these localized stresses on V-notched circular
plate and cylinder dynamics can be obtained through examination of the frequency data and characteristic modal shapes
offered herein. What is discerned from these results is that the present method is an effective one for modeling the
unbounded vibratory stresses, which exist at the vertex/terminus of cylindrical elastic bodies. Most of all very accurate
vibration data have been offered in this paper for comparison with future data obtained by other investigators. The
message the authors have attempted to convey is that investigators using continuum-based and discrete element-based
formulations will have difficulty in obtaining accurate results unless they explicitly consider in the assumed displacements
or stress fields the stress singularities at the re-entrant corner/edge.

In this paper a study has been restricted to analyzing the free vibration of completely free and cantilevered cylindrical
elastic solids having V-notches. The accurate vibration data presented for 3-D elastic V-notched solids serves as benchmark
values for comparisons with the data obtained by experiments and other theoretical approaches. However, the frequency
solutions for the six representative elastic bodies shown in Figs. A1(a)–(f) can be easily obtained by changing the values of
r(y) (see Appendix A) in the integral of energy functional. The additional formulations in Appendix A generalize the present
analysis for future follow-on extensions used by other investigators to examine 3-D vibrations of arbitrarily shaped
V-notched thick plates [50,51] and generally shaped V-notched elastic bodies. Also, the present research can be also
extended to investigate the vibration problems of elastic solids having V-notches with the other combinations of radial
boundary conditions. For this study, the Mindlin corner functions and 3-D edge functions have been provided in McGee
et al. [36] and McGee and Kim [34], respectively. Additional computational studies are required to fully address such
follow-on problems proposed here.

Specifically, the present research can be extended to address computational issues related to singular solutions of 2- and
3-D boundary-value problems using finite element methods coupled with acceptable sub-domain approaches [52,53], such
as Ritz-type super-elements (involving the elastic bodies herein) and boundary elements. From current engineering
practices, it has been found that the existence of stress singularities within the domain of various boundary-value problems
of applied mechanics deteriorates the accuracy of solutions obtained from quasi-uniform finite element meshes. In the
singular problems, gradients of the solution become infinite with abrupt local variations near the sharp corner/edge of the
V-notch. An accurate prediction of these gradient variations may be obtained efficiently by using singular Ritz super-
elements akin to the elasticity-based V-notched cylindrical bodies examined herein. These singular super-elements may be
implemented as substructures or sub-models of specified sub-domains defined by various geometric, load, and material
parameters. Finite element analysis of singular mechanics problems will be more efficiently parameterized and
customized, when analysts will develop a primary finite element analysis domain in conjunction with sub-domain
analyses via singular Ritz super-elements comprised of the elasticity-based mechanics of V-notched cylindrical bodies.

Appendix A. Domain descriptions of arbitrary shapes of elastic bodies having a V-notch or sharp radial crack

The expressions of r(y) used to perform the numerical volumetric integrations in Eqs. (9)–(11) along an arbitrarily
shaped circumferential edge (Fig. 1), represented as an elliptical, rectangular parallelepiped, rhombic, parallelogramic,
trapezoidal, or N-sided polyhedron shapes.

(1) Elliptical V-notched solid (Fig. A1(a)):

rðyÞ ¼ d2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

2 � d1d3

q
d1ð�pryrpÞ; (A.1)

where

d1 ¼
cos2 y

a2
þ

sin2 y
b2

;

d2 ¼
c cosy

a2
þ

d siny
b2

;

d3 ¼
c2

a2
þ

d2

b2
� 1:

(2) Rectangular parallelepiped V-notched solid (Fig. A1(b)):

rðyÞ ¼
b� d

siny
ðy1ryry2Þ; (A.2a)

rðyÞ ¼ �
a� c

cosy
ðy2ryry3Þ; (A.2b)
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rðyÞ ¼ �
bþ d

siny
ðy3ryry4Þ; (A.2c)

rðyÞ ¼
aþ c

cosy
ðy4ryry1Þ; (A.2d)

where

y1 ¼ tan�1 b� d

aþ c

� �
; y2 ¼ �tan�1 b� d

a� c

� �
;

y3 ¼ tan�1 bþ d

a� c

� �
; y4 ¼ �tan�1 bþ d

aþ c

� �
;

(3) Rhombic V-notched solid (Fig. A1(c)):

rðyÞ ¼
b� d� bc=a

siny� ðb cosyÞ=a
ðy1ryry2Þ; (A.3a)

rðyÞ ¼
bþ d� bc=a

sinyþ ðb cosyÞ=a
ðy2ryry3Þ; (A.3b)

rðyÞ ¼
bþ dþ bc=a

siny� ðb cosyÞ=a
ðy3ryry4Þ; (A.3c)

rðyÞ ¼
b� dþ bc=a

sinyþ ðb cosyÞ=a
ðy4ryry1Þ; (A.3d)

where

y1 ¼ tan�1 b� d

c

� �
; y2 ¼ �tan�1 d

a� c

� �
;

y3 ¼ �tan�1 bþ d

c

� �
; y4 ¼ �tan�1 d

aþ c

� �
;

(4) Parallelogram-shaped V-notched solid (Fig. A1(d)):

rðyÞ ¼
b� d

siny
ðy1ryry2Þ; (A.4a)

rðyÞ ¼
a� c � d=s

ðsinyÞ=s� cosy
ðy2ryry3Þ; (A.4b)

rðyÞ ¼ �
bþ d

siny
ðy3ryry4Þ; (A.4c)

rðyÞ ¼ �
aþ c þ d=s

ðsinyÞ=s� cosy
ðy4ryry1Þ; (A.4d)

where

y1 ¼ tan�1 b� d

aþ c þ b=s

� �
; y2 ¼ �tan�1 b� d

a� c � b=s

� �
;

y3 ¼ tan�1 bþ d

a� c þ b=s

� �
; y4 ¼ �tan�1 bþ d

aþ c � b=s

� �
;

and

s ¼ slope of the sides of parallelogram:

(5) Trapezoidal-shaped V-notched solid (Fig. A1(e)):

rðyÞ ¼
b� d

siny
ðy1ryry2Þ; (A.5a)

rðyÞ ¼
a� c � d=s2

ðsin yÞ=s2 � cosy
ðy2ryry3Þ; (A.5b)
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rðyÞ ¼ �
bþ d

siny
ðy3ryry4Þ; (A.5c)

rðyÞ ¼
aþ c � d=s1

ðsin yÞ=s1 þ cosy
ðy4ryry1Þ; (A.5d)

where

y1 ¼ tan�1 b� d

aþ c � b=s1

� �
; y2 ¼ �tan�1 b� d

a� c � b=s2

� �
;

y3 ¼ tan�1 bþ d

a� c þ b=s2

� �
; y4 ¼ �tan�1 bþ d

aþ c þ b=s1

� �
;

and

s1 ¼ slope of the right side of trapezoid;

s2 ¼ slope of the left side of trapezoid:

(6) N-sided polyhedron V-notched solid (Fig. A1(f)):

rðyÞ ¼
jyn � xn tanZnj

siny� tanZn cosy
ð�pryrpÞ; (A.6a)

where n=1,2,y,N (N=number of sides). The above equation can be applied to all range of y for N-sided polygon except
following cases:

rðyÞ ¼ �
a� c

cosy
ðyN=2ryryN=2þ1Þ; (A.6b)

rðyÞ ¼
aþ c

cosy
ðyNryry1Þ: (A.6c)

In Eq. (6a),

Z1 ¼ bþ
p
2

Zn ¼ Zn�1 þ b
ðn ¼ 2;3; . . . ;NÞ;

8<
:

x1 ¼ aþ c

xn ¼ xn�1 þ L cosZn�1
ðn ¼ 2;3; . . . ;NÞ;

(

y1 ¼
L

2
� d

yn ¼ yn�1 þ L sinZn�1

ðn ¼ 2;3; . . . ;NÞ;

8<
:

in which

b ¼
2p
N
;

L ¼ 2a tan
b
2
:
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